바른번역
 
제목 작성자 작성일 조회
내가 사랑한 수학 이야기 바른번역 18-04-05 17:57 333

교과서에서 뛰쳐나온 진짜 수학 이야기!
수학을 아는 것은 곧
더 나은 일상을 만드는 일로 이어집니다.

‘수포자(수학 포기 자)’라는 용어를 익숙하게 사용하는 요즘 세대들에게 수학이란 과연 어떤 학문일까? 학년이 올라갈수록 읽기에도 버거운 낯선 수학 공식들의 등장 때문인지 고등학생 가운데 절반 이상이 말 그대로 수포자를 자처하고 있다. 그렇다면 수학이 그 옛날에도 범접하기 힘든 ‘두려운’ 학문이었을까? 혹시 과거와 달리 현대 사회는 수학과 일상 사이에 깊은 틈이 벌어져 수학이 우리에게 큰 도움이 된다는 사실을 사람들이 점차 잊고 있는 것은 아닐까? 이에 이 책은 지금껏 수학이 어떻게 사용되어 왔는지, 또 현재는 어떻게 쓰이고 있는지를 실제 생활 속에서 사용하고 있는 수학 공식들을 통해 살펴본다. 이를 통해 수학이 현실과 얼마나 밀접한 학문인지, 나아가 우리의 일상을 풍요롭게 하는 데 얼마나 기여했는지를 확인할 수 있을 것이다.

<출판사 서평>

수학자의 시선으로 바라본
우리의 일상 속 수학 들여다보기
초등학생 때부터 ‘수포자(수학 포기 자)’라는 용어를 익숙하게 사용하는 요즘 세대들에게 수학이란 과연 어떤 학문으로 느껴질까요? 나 이외의 다른 사람을 구별하게 될 무렵 숫자 2를 인지하면서부터 시작된 수학은 점점 커가면서 대학 입학을 위해서 꼭 익혀야 하는 도전 과제로 받아들이게 됩니다. 학년이 올라갈수록 숫자와 낯선 문자들의 나열로밖에 보이지 않는, 읽기에도 버거운 공식들 때문에 학문으로 접하기 전에 많은 학생들이 지레 포기하는 과목이 되어버린 지 이미 오래입니다. 언젠가부터 우리 아이들에게 수학은 단지 등급을 매기는 ‘시험 도구’일 뿐입니다.
그렇다면 수학이 학문으로서 빛을 발하기 시작하던 그 옛날에도, 범접하기 힘든 ‘두려운’ 학문이었을까요? 단언컨대 아니었을 겁니다. 옛날 사람들은 수학이 생활과 긴밀하게 연관되어 있는 느낌을 현대인보다 훨씬 많이 받았을 것입니다. 특히 고대의 지도자들에게 수학이란, 나라를 다스리기 위해 꼭 필요한 수단 중 하나였습니다. 예컨대, 거대한 피라미드를 만들기 위해서는 ‘피타고라스의 정리’가 꼭 필요했습니다. 한편, 이런 피라미드를 만드는 데 동원되었던 사람들이 피라미드 건설 기술을 자신의 고향으로 가지고 돌아가 실제 생활 속에서 사용함에 따라 사회 전반에 걸쳐 수학적 지식이나 기술이 발전해갔을 것입니다.

고대에서 현대에 이르기까지
수학은 어떻게 사용되어 왔을까?
수학은 오랜 역사를 품고 있습니다. 인간과 함께 진보했고, 계속해서 새로운 이론과 방법이 만들어져 왔습니다. 그것은 많은 사람의 노고로 얻게 된 선물입니다. 지금 우리가 특별히 의식하지 않고 사용하는 인도·아라비아 숫자도 하루아침에 만들어진 것이 아닙니다. 미지수를 ‘x’로 두는 발상도 고대 사람들에게는 없었을 터입니다. 이렇게 수를 문자로 표현하기 시작한 지도 어느덧 500년이 지났습니다. 누구나 편리하게 사용할 수 있도록 수많은 학자가 연구를 거듭해서 얻게 된 성과입니다.
수학은 인류가 위기를 맞을 때일수록 더욱 진보했습니다. 페스트의 감염 경로를 알 수 없어 유럽 전체가 근심에 빠져있던 시대에는, 어느 정도의 속도로 감염자가 증가하는지를 알기 위해 뉴턴과 라이프니츠가 갓 만들어낸 미적분 개념을 곧바로 감염 모델에 응용하기도 했습니다.
과거처럼 오늘날의 수학 교육도 사회 전반의 수준을 올리기 위해 애는 쓰고 있지만, 수학이 어디에 어떻게 쓰이고 있는지에 대해서까지 알려주지는 않습니다. 하지만 우리는 매일 수학에게 신세를 지고 있습니다. 혹시 과거와 달리 현대 사회는 수학과 일상 사이에 깊은 틈이 벌어져 수학이 우리에게 큰 도움이 된다는 사실을 사람들이 점차 잊어가는 것은 아닐까요.
이에 이 책은 지금껏 수학이 어떻게 사용되어 왔는지, 또 현재는 어떻게 쓰이고 있는지를 알려주기 위해 일상생활 속 숨겨진 수학의 원리들을 하나씩 찾아내어 차근히 설명하고 있습니다.
수포자라도, 수학이라면 지긋지긋한 이라도 상관없습니다. 수학이 우리 생활 속에 어떻게 쓰이고 있는지 이 책을 따라 찬찬히 따라가다 보면 수학이 이토록 재밌는 학문이었나 하는 생각을 절로 떠올리게 될 것입니다.

PART 0 도대체 공리와 정리가 뭐지?
수학을 공부할 때 처음으로 해야 할 일은 약속한 사항을 배우는 것입니다. 요컨대, 수학의 용어를 익혀야만 다음 단계로 넘어갈 수 있습니다. 우리가 익숙하게 듣고 종종 사용하는 ‘공식’·‘정리’·‘정의’ 등의 수학 용어들을 정확히 구별하는 방법부터, 피타고라스의 정리와 이차방정식, 수를 문자로 표현하는 발상의 탄생 배경, 인도·아라비아 숫자의 장점과 단점 등 본격적인 수학의 세계로 들어서기에 앞서 기본적인 수학의 원칙들을 짚고 넘어갑니다.

PART 1 우리는 먼 옛날부터 수학의 도움을 받아왔다
수학 시간마다 우리를 괴롭히던 수학 공식들이 사실은 우리의 생활을 좀 더 편리하게 도와주기 위해 생겨난 것이라는 사실을 알고 있나요?
지역마다 각기 다른 씨 뿌리는 시기를 정확히 알아내기 위해서 피타고라스의 정리가 생겨나고, 다양한 형태의 논밭 넓이를 계산해서 세금징수를 하기 위해 삼각형, 원, 다각형의 넓이 공식이 발전되었습니다. 건축가들은 여러 건축 현장에 정확한 수치를 찾기 위해 제곱근을 사용하고, 오층탑의 지붕을 똑같이 나누거나 사방으로 뻗은 서까래를 설치하기 위해 세제곱근 공식이 탄생했습니다.
원의 지름과 둘레, 반지름과 넓이의 관계를 나타내는 데 주요하게 사용하는 원주율이 500년의 시차를 두고 서양보다 동양에서 먼저 구했다는 사실은 자못 흥미롭게 다가옵니다.

PART 2 수학으로 알아보는 일상의 요모조모
수학을 배우면 논리적인 대화를 할 수 있다고 흔히들 생각합니다. 그러나 논리적인 순서를 따라가는 것과 수학의 논리를 실생활에 적용하는 것은 의미가 다릅니다. 수학의 논리는 어디까지나 수학의 증명을 위한 것이기 때문에 일반 사회의 논의에서 함부로 사용할 수 없다는 것을 구체적인 예를 통해 알아봅니다.
불법 피라미드 다단계 판매 방식은 역사적으로도 오래된 사기 수법입니다. 조금만 노력하면 누구나 쉽게 부자가 될 수 있다는 유혹은 우리 주변에서 늘 도사리고 있습니다. 그러나 고등학교 수학 시간에 배운 등비수열의 기본 원리를 조금만 기억하고 있다면 그 같은 유혹에 빠지지 않을 수 있음을 실례를 통해 확인할 수 있습니다.
이밖에도 소문이 제대로 전달될 확률과 잘못 전달될 확률을 알 수 있는 점화식, 10만 명이든 10억 명이든 여론조사에 필요한 샘플 수는 1,537명만 있으면 된다는 통계에 관한 증명식, 지수 함수로 예상할 수 있는 인구 문제 등등 우리 생활과 밀접한 수학 공식들을 배울 수 있습니다.

PART 3 돈에 얽힌 수학
수와 관련된 학문인지라 그야말로 수학과 돈은 떼려야 뗄 수 없는 관계일 것입니다.
은행에서 돈을 빌리며 주고받는 이자 계산이 퍼센트의 발명으로 어떻게 심플하게 변화되었는지, 빚이 불어나는 과정이 등비수열을 통해 말 그대로 어떻게 산더미처럼 불어나게 되는지 등을 배울 수 있습니다.
보험료를 결정할 때 사용하는 큰수의 법칙과, 누구나 인정할 만한 적정 가격을 정할 때 용이하게 사용하고 있는 기하 평균과 조화 평균, 카지노에서 도박을 하거나 복권을 살 때 기대치로 가져도 좋을 법한 기댓값과 여사건으로 알 수 있는 확률의 법칙까지, 그 어떤 것보다 현실적인 수학 공식들을 하나씩 살펴봅니다.

PART 4 자연과학과 테크놀로지의 수학
자연과학 속에 숨어있는 수학에는 어떤 것이 있을까요? 초기의 지동설은 천체의 운행을 기능적으로 표현하는 데 있어 천동설의 논리에 훨씬 미치지 못했습니다. 우리가 알고 있는 지동설의 위상은 타원 방정식과 케플러의 세 가지 법칙이 바로 세워주었습니다.
자연과학뿐만 아니라 첨단 기술에도 수학 공식과 법칙은 어김없이 사용되고 있습니다. 휴대전화의 작동 원리에 수학의 법칙이 숨어있다는 사실 알고 있나요? 혼선이 생기지 않도록 하려면 이웃 기지국의 주파수대의 종류로 단 네 가지만 있으면 된다는 사실을 4색 문제를 통해 해결할 수 있었습니다. 지금 우리가 사용하는 대부분의 공산품에 붙어 있는 바코드에 쓰이는 2진법, 비행기가 나는 조건을 계산한 베르누이의 정리, 이차함수에서 발견한 카오스 현상, 지진의 규모를 측정하는 매그니튜드 사용에 쓰이는 로그 공식 등등 여러 기술 속에서 수학의 원리들을 찾아볼 수 있습니다.

PART 5 그 유명한 정리는 정말 쓸모가 있을까?
수학자의 이름을 내건 유명한 정리들 가운데 아직까지도 증명되지 못한 것들이 있습니다. 그래서 슈퍼컴퓨터가 활약을 펼치는 요즘 시대에도 정리를 풀기 위해 수많은 수학자들이 도전하고 있습니다. 이렇게 오랜 시간 많은 이들이 그 도전을 멈추지 않을 만큼 수학적 정리들이 과연 엄청난 쓸모가 있는 것들일까요? 그 의문들을 하나씩 파헤쳐봅니다.
예컨대, 수학사에서 가장 악명 높은 미해결 난제로 꼽히던 ‘페르마의 정리’가 마침내 증명을 통해 우리에게 줄 수 있는 도움은 어떤 것이 있을까요? ‘존재하지 않음’을 증명하는 이 정리는 17세기에 시작되어 수많은 수학자들의 도전 끝에 20세기 말에서야 증명되었으나 허무하게도 이를 활용할 수 있는 분야는 거의 없습니다. 그러나 이를 밝히기 위해 ‘대수기하학’, ‘타원 곡선’ 등의 분야가 발전했다고 하니 난제의 증명이 결코 쓸모없는 것은 아니었나봅니다.
이밖에도 다리를 한 번씩만 지나서 모든 다리를 다 건너는 산책 경로를 수학적으로 증명한 오일러의 한붓그리기 법칙, 단 다섯 개의 도형만 존재하는 정다면체를 증명하는 오일러의 다면체 정리, 무한개의 수를 한 번에 증명할 수 있는 수학적 귀납법 등 수학적으로 유명한 정리들이 우리의 생활에 어떠한 영향을 미쳤는지 하나씩 살펴봅니다.




△ 이전글 : 5분 스탠딩 건강법
□  현재글 : 내가 사랑한 수학 이야기
▽ 다음글 : 내가 사랑한 물리학 이야기